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ABSTRACT
Inflammatory bowel disease (IBD) is a persistent inflammatory condition that affects the gastro
intestinal tract and presents significant challenges in its management and treatment. Despite the 
knowledge that within-host bacterial evolution occurs in the intestine, the disease has rarely been 
studied from an evolutionary perspective. In this study, we aimed to investigate the evolution of 
resident bacteria during intestinal inflammation and whether- and how disease-related bacterial 
genetic changes may present trade-offs with potential therapeutic importance. Here, we perform 
an in vivo evolution experiment of E. coli in a gnotobiotic mouse model of IBD, followed by 
multiomic analyses to identify disease-specific genetic and phenotypic changes in bacteria that 
evolved in an inflamed versus a non-inflamed control environment. Our results demonstrate 
distinct evolutionary changes in E. coli specific to inflammation, including a single nucleotide 
variant that independently reached high frequency in all inflamed mice. Using ex vivo fitness 
assays, we find that these changes are associated with a higher fitness in an inflamed environment 
compared to isolates derived from non-inflamed mice. Further, using large-scale phenotypic 
assays, we show that bacterial adaptation to inflammation results in clinically relevant phenotypes, 
which intriguingly include collateral sensitivity to antibiotics. Bacterial evolution in an inflamed gut 
yields specific genetic and phenotypic signatures. These results may serve as a basis for developing 
novel evolution-informed treatment approaches for patients with intestinal inflammation.
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Introduction

Dysbiosis of the intestinal microbial community, 
characterized by alterations in bacterial composi
tion and function, is a hallmark of inflammatory 
bowel disease (IBD). The nature of these microbial 
imbalances has been described extensively and at 
numerous complementary levels, including diver
sity parameters, taxonomic- and functional geno
mic changes, and at the level of gene expression.1–6 

This important body of work accounts for changes 
observed at the ecological level, while the latter also 
considers the potential contribution of phenotypic 

plasticity of gut microbes to disease susceptibility. 
Moreover, numerous studies have highlighted the 
association of dysbiotic microbial signatures with 
distinct clinical IBD subtypes, including Crohn’s 
disease (CD) and ulcerative colitis (UC), further 
emphasizing the intricate relationship between the 
gut microbiota and disease pathogenesis.3,4,7

While research has focused extensively on the 
altered ecology of the gut microbiota in IBD, its 
potential for evolutionary change during disease 
pathogenesis has received comparatively limited 
attention. However, numerous recent studies have 
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revealed the capacity of bacteria to undergo adap
tive evolution within the host environment, includ
ing the gut [reviewed in 8]. This phenomenon is 
evident in both mouse models9–11 and human 
subjects,12 even in the absence of overt disease. 
Importantly, recent studies indicate that evolution
ary changes also occur in the context of host 
inflammation. Elhenawy et al. focused on CD- 
related adherent-invasive E. coli (AIEC) using 
a murine model of chronic colonization, and 
revealed the evolution of lineages displaying 
enhanced invasive and metabolic capabilities.13 

Notably, they found that the fitness benefits con
ferred by increased motility were specific to the 
host environment, suggesting an evolutionary 
trade-off. In a second study exploring bacterial 
evolution in aging mice, significant differences in 
E. coli evolution between old and young mice were 
revealed.14 The aged mouse environment exhibited 
increased inflammation, leading to the specific tar
geting of stress-related functions in E. coli.

These findings emphasize the importance of 
including evolutionary perspectives when studying 
dysbiosis of the gut microbiome. In particular, 
documenting bacterial evolution within the 
inflamed gut has the potential to reveal the timing 
of disease-specific signatures, i.e., it may help dis
entangle the classical “chicken or egg” dilemma in 
microbiome research,15 as well as to shed light on 
potential trade-offs resulting from adaptive 
changes. Evolutionary trade-offs occur when an 
increase in fitness in one environment is accompa
nied by a decrease in fitness in another.16,17 These 
trade-offs can have significant therapeutic implica
tions and are observed in various related fields, 
including antibiotic resistance18–21 and cancer 
treatment.22–25 Thus, elucidating trade-offs asso
ciated with bacterial adaptations in the inflamed 
gut may offer insight into potential collateral effects 
on bacterial fitness and prove useful for developing 
novel treatment strategies based on evolutionary 
principles.

In this study, we investigated the evolutionary 
dynamics of resident gut bacteria during intest
inal inflammation using an established gnotobio
tic mouse model of IBD.26 Through the 
monocolonization of both Interleukin 10- 
knockout and wildtype mice with a single E. coli 
strain (NC101), this setup allowed us to track 

genetic and phenotypic changes over the course 
of intestinal inflammation and to evaluate their 
potential clinical relevance. By employing mul
tiomic analysis and high-throughput phenotypic 
screening, we identify genetic changes in bacteria, 
alterations in the metabolome, and differences in 
numerous phenotypic traits among bacterial 
populations that are specifically associated with 
the evolution in inflamed Il10-knockout mice. 
Remarkably, among the phenotypic changes 
observed in inflammation-adapted bacteria are 
sensitivities to antibiotics with a known thera
peutic value in IBD. These results further con
firm the importance of understanding bacterial 
adaptation to inflammation and suggest its more 
widespread study of patients as a means to 
develop novel treatment approaches.

Results

Gnotobiotic model of intestinal inflammation

In order to capture the evolutionary dynamics of 
bacteria evolving in the context of intestinal 
inflammation, we implemented a previously 
established gnotobiotic model, for which inflam
mation develops upon colonization with the 
E. coli NC101 strain in IL10-deficient (Il10−/−; 
herein “KO”), but not wild type (WT) mice.26 

We performed two independent in vivo experi
ments (see Methods), in which WT (total N = 14) 
and KO (total N = 11) mice were monocolonized 
and monitored over a period of 12 weeks, with 
longitudinal sampling of feces for downstream 
multiomic analyses (Figure 1a; Table S1, see 
Methods). Inflammation was monitored via levels 
of lipocalin-2 in feces, which steadily and signifi
cantly increased in KO mice, but not in WT 
mice, already at one week post-inoculation 
(Figure 1b, Tables S2 and S3, Wilcoxon signed- 
rank test Benjamini-Hochberg-corrected P < .05). 
Histopathological assessment of colonic tissue at 
the endpoint reveals significantly higher pathol
ogy scores in KO mice than in WT mice 
(Figure 1c, Kruskal-Wallis H test Benjamini- 
Hochberg-corrected P < .05), further confirming 
that inflammation was specific to KO mice. The 
bacterial load in the fecal samples was stable 
throughout the experiment, as measured by 
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CFU counts normalized by wet feces weight (Fig 
S1, Tables S4 and S5).

Bacterial populations show genetic diversification 
in healthy and inflamed mice

To assess the genetic diversification of the bacter
ial populations during the evolution experiment, 
we performed shotgun sequencing on each single 
inoculum and all bacterial populations at weeks 1, 
4, 8, and 12 and identified de-novo mutations 
(i.e., mutations that were not present in an inocu
lum; see Methods) by comparison with the gen
ome of the ancestral strain. No statistically 
significant difference was observed in the number 
of mutations in the bacteria from KO and WT 

mice at any point in the experiment, suggesting 
that differences in the intestinal environment in 
which the populations evolved did not exert 
a measurable effect on the number of mutations 
(Figure S2, Table S6). One week after gavage, the 
bacterial populations showed a median number 
of 87 de-novo mutations, with a subsequent 
reduction at the following timepoints, although 
the differences are not significant (median at 
week 4 = 34, at week 8 = 45 and at week 12 = 36, 
Figure S2, Table S7 Wilcoxon signed rank test, 
corrected P > .05). Comparison of the evolved 
populations at week 12 with the ancestral strain 
reveals a median number of 39 mutations per 
mouse in WT and 26 in KO mice (Figure 1d). 
This indicates that the evolved bacterial 

Figure 1. Application of a mouse model of IBD to test the effect of gut inflammation on the evolution of NC101. a Schematic of the 
experimental setup. Germ-free WT and Il10−/− mice were monocolonized with E. coli NC101. Fecal samples were collected from each 
mouse at the indicated time points and analyzed as described. b Fecal lipocalin-2 levels from the WT and Il10-/- mice. Lipocalin-2 was 
measured using the Mouse Lipocalin-2/NGAL DuoSet ELISA and normalized to feces weight. Each dot represents one mouse at each 
sampling point. Results of Wilcoxon signed-rank test of lipocalin-2 concentrations at each time point are reported in Table S3. 
Differences were considered statistically significant at Benjamini-Hochberg-corrected P < .05. c Boxplots of the histopathology scores 
of the colon tissue of mice after sacrifice at the end of the experiment. Each dot represents a single mouse. Differences were 
considered statistically significant using the Kruskal-Wallis H test at Benjamini-Hochberg-corrected P < .05. d Number of de-novo 
mutations in the bacterial populations at week 12 in WT and KO mice compared with the reference genome. Each dot represents 
a bacterial population from a single mouse. Differences were considered statistically significant using the Kruskal-Wallis H test at 
Benjamini-Hochberg-corrected P < .05. e Partial least squares-discriminant analysis of the de-novo mutated genes in the evolved 
populations of E. coli NC101 at week 12 in WT and KO mice compared to the reference genome. Differences were considered 
statistically significant at a PERMANOVA P < .05.
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populations in both groups of mice genetically 
differ from the ancestral strain. Although the 
unphased shotgun data do not enable us to 
directly analyze the role of genetic hitchhiking, 
Table S8 indicates the number of mutations at 
week 12 already present at each earlier time 
point. Interestingly, there remains a substantial 
(on average approx. 60% in each mouse geno
type) proportion of de-novo mutations that 
arose between week 8 and 12, which suggests 
that a large proportion of the mutations cannot 
be explained by hitchhiking from standing 
genetic variation at earlier time points.

To test for overall differences in the de-novo 
mutations that accumulated in the bacterial popu
lations that evolved in the WT and KO mice, we 
performed a partial least-squares discriminant ana
lysis (PLS-DA) on all mutated loci (genes or inter
genic regions differing in their nucleotide sequence 
compared to the inocula). We find a clear and 
significant distinction between the populations 
that evolved in the two mouse genotypes 
(Figure 1e, PERMANOVA P = .0022). The same 
result was observed when comparing single de- 
novo mutated genomic positions between evolved 
bacterial populations from WT and KO mice 
(Figure S3, PERMANOVA P = .0016).

Single nucleotide polymorphism differentiates 
evolved bacteria of all inflamed mice from evolved 
bacteria of healthy mice

To identify candidates for genetic changes that may 
be specifically selected in an inflamed environment, 
we focused on parallel mutations (i.e., genes or 
intergenic regions mutated in at least two mice that 
were gavaged with an independent inoculum; see 
Methods) and their associated functions. Analysis 
of the KEGG pathways encompassed by these loci 
reveals seven pathways unique to the bacterial popu
lations from inflamed mice (Figure 2a). These path
ways include those involved in amino acid 
metabolism, pyruvate metabolis, all of which have 
been associated with IBD in clinical settings.27,28 In 
addition to the pathways affected only in bacterial 
populations from the inflamed mice, 18 pathways 
are affected only in populations from healthy mice, 
and 18 other pathways are mutated in populations 
from both healthy and inflamed mice (Figure 2a).

Univariate analysis reveals that only one parti
cular locus is mutated at significantly higher fre
quencies in evolved bacterial populations from 
inflamed than healthy mice (Wilcoxon signed- 
rank test, corrected P = .001, Table S9), which is 
a single nucleotide polymorphism (SNP) (C>T) 
nine nucleotides upstream of the gene mprA 

Figure 2. Parallel evolution of E. coli in inflamed mice revealed a disease-specific genetic signature. a Parallelly mutated genes were 
classified based on KEGG pathways; b An intergenic C>T mutation 9-nt upstream of mprA was the unique parallel mutation 
significantly more abundant in populations evolved in the inflamed gut (Wilcoxon signed-rank test Benjamini-Hochberg corrected 
P < .005). The heatmap shows the frequency of the mutation in bacterial populations from each mouse. c Mutation frequency (left 
axis) of the intergenic C>T mutation 9-nt upstream of mprA and mean of lipocalin-2 concentrations across KO mice at different 
timepoints during the in vivo evolution experiment. Each line represents a population from a single mouse. Each bar represents the 
mean value of the normalized concentration of lipocalin-2 in fecal samples from KO mice.

4 R. UNNI ET AL.



(position 3,009,211) (Figure 2b). It is found in 11/ 
11 KO mice at the endpoint with a frequency 
between 0.373 and 1, compared to 2/14 WT mice 
with a frequency between 0.085 and 0.239. Two 
other mutations are detected in the same intergenic 
region, although in a few populations only. The 
bacteria from one WT mouse harbors a C>A muta
tion at the same position (position 3,009,211) with 
a frequency of 0.052, whereas those from one 
inflamed mouse harbors a G>T SNP at a nearby 
position (position 3,009,194) with a frequency of 
0.611.

To further investigate the most frequent C>T 
mutation, we analyzed its frequency over the 
course of the experiment (weeks 1, 4, 8, and 
12). At week 1 the mutation is not present or 
below the detection threshold (minimum fre
quency of 0.05; see Methods), while at week 4, 
it is observed in 7/11 KO mice with a maximum 
frequency of 0.616, in comparison to 1/14 WT 
mice with a frequency of 0.364 (Figure 2c). 
After a steady increase in frequency at weeks 8 
and 12, the mutation reaches fixation or near 
fixation in 7/11 KO mice and is also present at 
intermediate frequencies in the remaining 4/11 
KO mice (Figure 2c). Importantly, the increase 
in frequency of the C>T mutation strongly coin
cides with the increase in inflammation as mea
sured by lipocalin-2 levels, both in KO mice 
alone and when including all mice (Figure 2c, 
Figure S4; Spearman’s rank correlation rho P = 
.00005 for KO mice alone and P = 3.005e-11 for 
all mice).

Interestingly, closer inspection of the inter
genic region between the hypothetical pro
tein_02879 and the gene mprA reveals that this 
genomic region is a mutational hotspot, with six 
others positions in this region having mutated 
over the course of the in vivo experiment 
(Figure S5).

Taken together, we identify a C>T change at 
position 3,009,211 in the E. coli genome, which is 
a parallel mutation significantly associated with 
intestinal inflammation. This mutation is located 
upstream of mprA (also known as emrR), 
a transcriptional repressor of several genes, includ
ing those encoding the efflux pump EmrAB and 
AcrAB, and a putative outer membrane porin 
OmpC (also known as NmpC).29–31

Bacterial populations show significantly different 
expression profiles in healthy and inflamed mice

To quantify the expression of genes that are part of the 
mprA regulon (mprA, emrAB, acrAB, and ompC),29–31 

as well as gain an overall view on differences in gene 
expression in WT- compared to KO-evolved bacterial 
populations, we perform metatranscriptomic sequen
cing of all week 12 bacterial populations. To test for 
overall differences in the gene expression, we perform 
a partial least-squares discriminant analysis (PLS-DA) 
on all genes, using RPKM (Reads per Kilobase 
per million Mapped Reads) as a proxy for gene 
expression. We find a clear and significant difference 
in overall gene expression between populations 
according to mouse genotype (Figure S6A, 
PERMANOVA P < .00005). Differential expression 
analysis performed with Deseq2 reveals 2,219 genes 
that are up- or down-regulated in one of the two 
conditions (1,022 upregulated for the populations 
from the healthy gut and 1,197 for the population 
from the inflamed gut; Benjamini-Hochberg cor
rected P < .05, Table S10). Analysis of the KEGG path
ways encompassed by these upregulated genes reveals 
25 pathways unique to the bacterial populations from 
inflamed mice (Figure S6B). These pathways include 
Ribosome, Aminoacyl-tRNA biosynthesis, Glutat 
hione metabolism, RNA degradation, Folate bio
synthesis, Sulfur relay system, Arginine biosynthesis, 
Protein export, Pantothenate and CoA biosynthesis, 
and Homologous recombination, among others 
(Table S11). Interestingly, mprA and ompC, which 
can be putatively regulated by mprA,30 are signifi
cantly more expressed in the populations that evolved 
in the inflamed gut (Table S10; Figure S6C).

Increase in fitness of evolved bacteria in an 
inflammatory environment

As parallel mutations are a strong indication of 
adaptation by natural selection, we hypothesized 
that the evolved bacterial populations may have 
a fitness advantage in the environment in which 
they evolved, and thus next focused on the pheno
types present in the evolved bacterial populations. 
To test whether evolution in the inflamed mouse 
gut confers a fitness advantage to E. coli, we per
formed “reciprocal transplant” experiments based 
on ex vivo assays using filtered cecal content from 
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inflamed versus non-inflamed mice, collected after 
sacrifice (referred to subsequently as “ex vivo 
media”). Populations of E. coli from fecal samples 
collected at week 12 from a subset of mice (N = 5 
KO mice and N = 5 WT mice) were cultured in ex 
vivo media derived from both inflamed and non- 
inflamed mice. While no significant difference is 
observed between bacteria from WT and KO mice 
when grown in non-inflamed ex vivo media 
(Kruskal-Wallis test P = .9168; Figure 3a), bacteria 

from KO mice grow significantly better than those 
from WT mice in the inflamed ex vivo media 
(Kruskal-Wallis test P = .009023). Notably, bacteria 
from KO mice grow significantly better in the 
inflamed ex vivo media than in the non-inflamed 
ex vivo media (Kruskal-Wallis test P = .0472), while 
bacteria from WT mice show no difference in 
growth in the two media (Kruskal-Wallis test 
P = .4647). Thus, bacteria that evolved in the 
inflamed gut possess a fitness advantage in the 

Figure 3. Phenotypic characterization of evolved E. coli and the inflammatory environment in which they were selected. a Evolved 
populations from a subset of mice (N = 5 KO mice and N = 5 WT mice) were cultured in media derived from the cecal content collected 
from healthy (WT) and inflamed (KO) mice after sacrifice. The area under the curve (AUC) calculated from growth curves measured 
during the growth of evolved populations from each mouse in inflamed and healthy cecal contents is shown. Each dot represents the 
mean of three independent replicates. *P < .05 (Kruskal-Wallis H test); ns, not significant. b Partial least squares discriminant analysis 
(PLS-DA) of the fecal metabolite abundances at different time points during the evolution experiment. Differences were considered 
statistically significant at PERMANOVA P < .05. c Bacterial metabolism was measured in vitro in a range of compounds. Measurements 
were performed on bacterial populations derived from fecal samples collected at weeks 1 and 12 of the in vivo evolution experiments. 
Partial least squares discriminant analysis (PLS-DA) was performed on the area under the curves (AUCs) of the measured metabolic 
activity of the evolved bacterial populations from all mice in the range of compounds. Differences were considered statistically 
significant at PERMANOVA P < .05. d Compounds from the fecal metabolome and the in vitro screen with the shortest path were 
inspected. One of the pairs with the shortest path was glutamate-arginine. Glutamate was enriched in the fecal metabolome of KO 
mice, whereas KO-adapted bacteria showed higher metabolic activity in the presence of arginine. Each dot represents the mean 
metabolic activity of the bacterial population from a mouse in the presence of L-arginine from two independent measurements (left) 
or the abundance of glutamate in the fecal sample from a mouse (right). *P < .05 (Kruskal-Wallis test at Benjamini-Hochberg- 
corrected), ns, not significant.

6 R. UNNI ET AL.



inflamed gut environment, suggesting that evolu
tion in the inflamed gut results in specific adapta
tion to that environment.

Inflamed gut environment displays an altered 
metabolomic profile

To gain a better understanding of the environment 
to which these bacteria are adapted, we performed 
metabolomic analysis of fecal samples spanning the 
experimental time course (weeks 1, 2, 5, 6, 10, and 
12) using 1 H-NMR in mice from one of the two 
experiments. While WT and KO mice initially dis
play very similar fecal metabolomes (PERM 
ANOVA P = .754), with time, the fecal metabolic 
composition begins to vary concurrently with the 
onset of inflammation and the frequency of the 
C>T SNP upstream of mprA (Figures 3b, 1b, 2c). 
By week 12 of the evolution experiment, WT and 
KO mice exhibit notable differences in their fecal 
metabolomes, as revealed by PLS-DA 
(PERMANOVA P = .001; Figure 3b, Figure S7). 
Among the 77 metabolite features initially found 
in the samples from week 1, none show signifi
cantly different abundances between the WT and 
KO mice (Table S12). In contrast, in the week 12 
samples, 59 of the 77 detected features exhibit sig
nificant differences in abundance between WT and 
KO mice (Benjamini-Hochberg corrected P < .05; 
Table S13). Notably, 42 are significantly more 
abundant in KO mice than in WT mice, including 
all detected amino acids that were significantly 
enriched in KO mice based on KEGG pathway 
analysis of parallelly mutated loci. Among the 17 
enriched features in the WT mice, most are puta
tively annotated as (poly-)saccharides (Figure S8). 
Notably, variations in fecal metabolic composition 
at week 12 could arise from changes in both the 
host, linked to inflammation-related changes, and 
the bacterial population, associated with bacterial 
adaptation to inflammation.

Phenotypic profiling of evolved bacteria compared 
to ancestor

Having established that the environment in which 
the bacteria evolved significantly differs according 
to the mouse genotype, we next focused on specific 
bacterial traits that may have changed as 

a consequence of adaptation. Accordingly, we 
tested the metabolic activity of the E. coli popula
tions using the Biolog GENIII test panel, which 
comprises 94 unique biochemical tests, including 
a range of compounds (e.g., sugars, amino acids, 
and short-chain fatty acids), conditions (e.g., dif
ferent pH and salt concentrations), and chemical 
sensitivities (e.g., antibiotics; see Methods). Similar 
to the pattern observed for the fecal metabolome, 
the overall bacterial metabolic activity across all 
tested conditions is similar among populations 
derived from the WT and KO mice at week 1 of 
the experiment (PERMANOVA, P = .519; Figure 
S9), as also evidenced by the overlapping of the 
groups in the PLS-DA based on the overall meta
bolic activity observed in the BIOLOG GENIII tests 
(Figure 3c). However, by week 12, the overall pat
tern of metabolic activity across all tested condi
tions significantly differs between the bacteria from 
KO and WT mice (PERMANOVA, P = .005, Figure 
S9). These results suggest that adaptation to the 
inflamed intestine results in significantly altered 
bacterial metabolism and the ability to grow in 
the presence of different inhibitors. Among the 
compounds included in this screen, bacteria from 
WT and KO mice from week 1 showed signifi
cantly different metabolic activity in only one com
pound (Table S14). In contrast, bacteria from WT 
and KO mice at week 12 display significantly dif
ferent metabolic activities in the presence of 31 
compounds (Wilcoxon signed-rank test, corrected 
P < .05; Table S15, Figure S10).

To determine whether the differences in growth 
observed among the 31 compounds at week 12 may 
be related to the altered metabolomic environment 
of inflamed mice, we compared our BIOLOG 
GENIII results to the compounds found to be 
enriched in the fecal metabolome of the KO mice. 
Interestingly, metabolomics analysis revealed 
a significant enrichment of the amino acid histi
dine in the feces of KO mice compared to that of 
WT mice (Fig S8). In our in vitro metabolic assay, 
we found that bacteria adapted to the inflamed 
intestine had a significantly higher ability to meta
bolize histidine than bacteria adapted to the 
healthy intestine (Fig S10). Thus, adaptation to an 
environment enriched in histidine may have con
ferred a higher metabolic activity in the presence of 
this amino acid.
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To further explore how the results of our in vitro 
phenotypic analyses may relate to the fecal meta
bolomic profile observed in vivo, we performed 
a shortest path analysis on the metabolic network 
of the genome-scale metabolic model of E. coli 
NC10132 using metabolomic data and data from 
the in vitro metabolic activity screen (BIOLOG 
GENIII plates; see Methods). Pairs of compounds 
from the two datasets that are converted easily to 
each other by means of pathway length include 
glutamate and L-arginine (Figure 3d, Table S16). 
Glutamate is significantly more abundant in the 
feces of the inflamed mice (Figure S8), whereas 
bacteria adapted to the inflamed intestine are cap
able of significantly higher metabolism in the pre
sence of L-arginine (Figure S10). This result 
suggests that the bacteria may be converting argi
nine to glutamate, resulting in the enrichment of 
glutamate in KO mice (Figure 3d, Table S16). 
A second pair of compounds showing the same 
pattern are taurine and L-arginine. However, ana
lysis of the potential pathways between these com
pounds through flux variability analysis revealed 
that taurine cannot be produced by E. coli NC101 
under any of the tested conditions (Figure S11). 
Additionally, taurine abundance increased steadily 

over time only in KO mice (Figure S12). Thus, 
taurine is most likely to be produced by the host.

Finally, we examined 31 significant differences 
in metabolic activity observed between bacteria 
from WT and KO mice at week 12, in light of 
their potential clinical value. A first compound of 
interest is N-acetyl beta-D mannosamine 
(NADM), which is a precursor to sialic acid and 
has been shown to promote E. coli colonization of 
inflamed gut.33 Our E. coli populations show 
higher levels of metabolic activity in the presence 
of NADM after adaptation to the inflamed mouse 
gut. In contrast, E. coli evolved in the non-inflamed 
mouse gut show no such change (Figure 4). These 
findings suggest that increased virulence may occur 
in the context of adaptation to an inflamed 
environment.

Another interesting candidate is lithium chlor
ide, which is known to have anti-inflammatory 
effects via the inhibition of a key host regulator of 
inflammation, glycogen synthase kinase-3 beta34. 
In our experiment, bacterial populations evolved 
in WT mice display improved metabolic capacity 
in the presence of lithium chloride compared to the 
ancestor, while no such change is observed among 
those evolved in the KO mice. Thus, our results 

Figure 4. E. coli adapted to the inflamed gut show phenotypes with clinical relevance. Metabolic activity of bacteria isolated at weeks 1 
and 12 of the evolution experiment in the presence of three selected compounds. Area under the curve (AUC) was calculated from 
growth curves measured during the growth of evolved populations in the presence of each compound. Each dot represents the mean 
of the metabolic activities of the E. coli population from a mouse measured in two independent experiments. 
*, P < .05 (Kruskal-Wallis test at Benjamini-Hochberg-corrected). The clinical relevance of the three compounds is indicated.
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suggest that an inflamed intestinal environment 
may prevent the acquisition of this phenotype in 
E. coli.

A final promising category of candidates are anti
biotics, including fusidic acid, vancomycin, and lin
comycin. When considering the loading plot of the 
PLS-DA of our Biolog GENIII data (Figure S13; 
reporting which compounds contribute the most 
to the separation between groups), all three of 
these antibiotics contributed to the overall signifi
cant difference in the metabolic activity of the bac
teria from WT and KO mice (Figure 3c, Figure S13). 
Furthermore, fusidic acid is also significantly differ
ent between bacteria from the two mouse genotypes 
in the univariate analysis (Wilcoxon signed-rank 
test, corrected P < .05). Fusidic acid is an antibiotic 
that targets gram-positive bacteria, and is commonly 
used to treat skin infections.35 Interestingly, it was 
also shown to be effective in reducing disease activ
ity in a small number of patients with Crohn’s dis
ease, which is thought to be due to its 
immunosuppressive properties.36,37 We observe 
E. coli to display decreased metabolic activity in 
the presence of fusidic acid after adaptation to the 
inflamed intestine but increased metabolic activity 
after adaptation to the healthy intestine. These 
results suggest a potential trade-off between adapta
tion to inflammation and resistance to fusidic acid, 
where E. coli adapted to inflammation also show 
lower resistance to fusidic acid.

In summary, we observe widespread phenotypic 
differences among the bacterial populations that 
evolved in the inflamed intestines of KO mice 
compared to non-inflamed WT mice. These results 
relate to differences in the metabolome between 
these two intestinal environments and include phe
notypes that carry the potential for exploitation in 
a clinical setting.

Discussion

In this study, we describe the findings of an in vivo 
bacterial evolution experiment using a gnotobiotic 
mouse model of IBD. We find that E. coli evolved 
in the inflamed mouse gut accumulated specific 
genetic changes and that these changes confer 
a fitness advantage in the inflamed intestinal envir
onment, which significantly differs in its metabo
lome. Furthermore, we show that E. coli 

populations in the gut of healthy and inflamed 
mice have a distinct metatranscriptomic profile. 
Finally, we showed that adaptation to the inflamed 
intestine resulted in several phenotypic differences 
that may be clinically relevant, such as differential 
tolerance to antibiotics.

Recent studies have highlighted how strain-level 
changes in members of the gut microbiome can 
play a crucial role in the adaptation of the gut 
microbiome to novel conditions.14,38,39 However, 
the effects of inflammation on the evolution of gut 
commensals remain largely unexplored. Barreto 
et al. (2020) followed the adaptation of E. coli in 
mice of different ages in vivo.14 They showed that 
the aged mouse gut, which also showed high levels 
of inflammation, was a more stressful environment 
for E. coli, resulting in a higher number of muta
tions and more severe selective pressure on com
mensals, particularly in bacterial loci associated 
with stress-related functions. Notably, we find no 
difference in the number of mutations acquired by 
E. coli in inflamed mice, suggesting that other fac
tors associated with aging may contribute to the 
increased bacterial mutation rate observed by 
Barreto et al. (2020).14

More recently, Tawk et al. (2023) conducted 
a study of mice monocolonized with Bacteroides 
thetaiotaomicron that were subsequently infected 
with Citrobacter rodentium and developed inflam
mation. In this setting, a single-nucleotide variant 
of B. thetaiotaomicron, which had a higher toler
ance to oxidative stress than the ancestral variant, 
underwent selective sweeps and dominated the 
intestinal community.39 Although the experimen
tal setup and duration of inflammation differ 
between this study and the current study, our can
didate mutation is also known to be associated with 
oxidative stress.40 This is consistent with the obser
vations of Barreto et al. (2020) and Tawk et al. 
(2023)14,39 suggesting that oxidative stress is a key 
selective pressure in an inflamed environment. 
Moreover, oxidative stress plays a major role in 
the pathophysiology of IBD.41 Interestingly, this is 
also confirmed by our metatranscriptomic analysis. 
In particular, 14 of the genes upregulated in KO 
mice belong to the pathway of glutathione metabo
lism (eco00480), and previous studies demon
strated that glutathione metabolism is involved in 
protection against oxidative stress.42,43 In addition, 

GUT MICROBES 9



Sakamoto et al. reported mprA to be involved in 
resistance to oxidative stress, together with the 
activity of gshA (glutathione synthase), which is 
also upregulated in our populations40. Addit 
ionally, our metatranscriptomic data confirm the 
findings of Tawk et al., suggesting a role for vita
min B6 metabolism.39 We observe not only the 
upregulation of nine genes belonging to the vita
min B6 metabolism (eco00750), but also 
a significantly higher concentration of aspartate, 
a substrate of vitamin B6-dependent enzymes, in 
the feces of the inflamed mice.39

Importantly, many of our findings are consistent 
with the observations made in clinical IBD settings. 
First, the KEGG pathways affected by parallel 
mutations specific to the inflamed mice 
(Figure 2a) include D-amino acid-, pyruvate-, and 
thiamine metabolism. This is in line with previous 
reports that the basic metabolism is reduced in 
IBD.27,44

Second, the metabolomic profiling of the fecal 
samples reveals that KO mice have significantly 
higher levels of many amino acids, which was also 
reported in IBD patients.45 Furthermore, the 
results of our shortest path analysis suggest that 
bacterial production of glutamate from arginine 
may underlie the enrichment of glutamate in the 
inflamed gut. Although taurine-arginine was also 
one of the shortest paths we found, taurine could 
not be produced by E. coli according to the flux 
variability analysis. Thus, taurine is most likely to 
be produced by the host. Taurine is known to be 
a promoter of colonization resistance, and infec
tion has been shown to prime the microbiota 
against subsequent infections by inducing host 
production of taurine.46 Indeed, taurine was also 
reported to ameliorate inflammation in rat models 
of inflammation.47 Furthermore, taurine is 
a substrate for the microbiota-driven production 
of hydrogen sulfide48 and arginine is a precursor to 
polyamines that can protect against reactive species 
such as hydrogen sulfide.49 Thus, bacterial adapta
tion for improved metabolic activity in the pre
sence of arginine may be a response to the host- 
induced inflammatory changes in the intestine.

Third, E. coli adapted to the inflamed mouse gut 
also showed some clinically relevant phenotypes 
(Figure 4). N-acetyl beta-D mannosamine 
(NADM) is a precursor of polysialic acid, 

a pathogenic determinant, and studies have 
shown that it can promote colonization of the 
inflamed intestine by pathogenic E. coli.33,50 As 
NADM is a crucial player in mediating pathogenic 
activity in the inflamed intestine, the improved 
metabolic activity of inflammation-adapted E. coli 
observed in the presence of NADM may be 
a phenotype associated with virulence. This is con
sistent with reports of virulence-associated pheno
types, such as hypermotility, selected during the 
evolution of an adherent-invasive E. coli in the 
inflamed mouse gut.13 Furthermore, lithium chlor
ide is known to inhibit the activity of glycogen 
synthase kinase 3-β, a master regulator of host 
chronic intestinal inflammation mediated by toll- 
like receptors, and has been used as a treatment in 
a mouse model of IBD.34,51 However, the effect of 
lithium on the microbiome has not yet been eluci
dated. E. coli tolerance to lithium ions is regulated 
through antiporters, and proline has been shown to 
induce the uptake of lithium ions by E. coli.52,53 

Our finding that adaptation to the healthy mouse 
intestine confers improved metabolic capacity in 
the presence of lithium chloride, while adaptation 
to the inflamed intestine does not (Figure 4), 
implies that lithium may affect both the host and 
microbiome. This may also imply that adaptation 
to the healthy intestine affects the antiporter- 
dependent detoxification system of E. coli, resulting 
in improved ion tolerance.

Lastly, we found that bacterial adaptation to the 
inflamed gut decreases metabolic activity in the 
presence of fusidic acid, while adaptation to the 
healthy mouse gut improved metabolic activity in 
the presence of fusidic acid (Figure 4). Fusidic acid 
is an antibiotic with T cell-specific immunosup
pressive effects that also stimulate gastric mucus 
secretion. Furthermore, it was successfully applied 
to alleviate inflammation in rats, as well as to treat 
selected patients with Crohn’s disease for whom 
conventional treatment was ineffective.36,37 

However, the effect of fusidic acid on the gut 
microbiome in IBD has not yet been studied. Our 
results imply that bacterial adaptation to the 
inflamed gut can result in a trade-off for resistance 
to fusidic acid. Importantly, such trade-offs are 
a fundamental concept in evolutionary medicine, 
where increased fitness in one context results in 
a consequent decrease in fitness in another context, 
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and are proposed as possible potent therapeutic 
strategies against antibiotic resistance and 
cancer.18,54 Thus, the therapeutic effect of fusidic 
acid observed in patients with CD is due to trade- 
offs in microbiome adaptation to the inflamed gut 
and/or its immunosuppressive effects on the host. 
Interestingly, it is known that lipocalin-2 plays 
a role in iron-sequestration, which has been 
reported to have a role in antibiotic resistance and 
sensitivity.55 It is thus worth noting that there is no 
enrichment of genes involved in iron metabolism 
among the mutated genes in the populations 
evolved in the inflamed gut, as well as among the 
upregulated genes in these populations.

Current treatment options for IBD are largely 
limited to the treatment of inflammation with 
a chronic risk of relapse. Corticosteroids, aminosa
licylates, and immunosuppressive agents are the 
conventional drugs of choice, but the safety and 
efficacy of novel emerging strategies remain 
unclear (reviewed in 56). Given that disease- 
specific aspects of the microbiome have been 
shown to remain stable over long periods in IBD 
patients despite treatment,57 a persistent microbial 
influence on the intestinal environment may be 
a key risk factor for relapse. Thus, our results high
light new avenues of research involving evolution- 
informed therapeutic strategies that exploit trade- 
offs to either prevent adaptation to inflammation 
and/or help restore desirable ancestral traits in the 
microbiome.

While our results provide valuable insights into 
the potential role of evolution-informed therapeu
tic strategies, it is important to acknowledge that it 
remains unknown whether the same or similar 
genotypic and phenotypic changes would be 
observed in the context of a complex microbial 
community as present in the human gut micro
biome. Future work should therefore include simi
lar in vivo evolution experiments using a complex 
or synthetic microbial community.

Methods

Bacterial strains

E. coli NC101 strain was obtained from Balfour 
Sartor, University of North Carolina, Chapel Hill, 
NC, USA.58 Escherichia coli NC101 is a mouse 

strain isolated from the intestine of a WT 129S6/ 
SvEv mouse raised under specific-pathogen-free 
(SPF) conditions.58 The strain was cultured at 
37°C in Luria Bertani (LB) medium with continu
ous shaking. The ancestor strain for the in vivo 
experiment was obtained by plating the overnight 
culture on LB agar and picking single colonies to be 
used as inocula for the in vivo evolution 
experiment.

Mouse model

Two independent experiments were conducted to 
study E. coli adaptation to the inflamed gut (Table 
S1). In the first experiment, “Exp1”, a single inoculum 
was used for all mice. In order to ensure that muta
tions present in a common inoculum could not be 
falsely identified as “parallel” mutations, the second 
experiment, “Exp2” was performed with independent 
inocula for each mouse. Accordingly, our definition 
of a parallel mutated gene requires it to be mutated in 
at least two mice that were gavaged with a different 
inoculum. Germ-free (GF) C57BL/6NTac (WT) and 
C57BL/6NTac-Il10em8Tac (KO) male mice were 
purchased from Taconic Biosciences (Silkeborg, 
Denmark) and housed in the Germ-Free Animal 
Facility at the Max Planck Institute for Evolutionary 
Biology (Ploen, Germany). GF mice were maintained 
in sterile isolators (MB-10, Quip Laboratories, 
Delaware, USA) and fed sterilized 50 kGy V1124– 
927 Sniff (Soest, Deutschland). The animals were 
allocated to independent cages with a maximum of 
four mice per isolator until they reached an age of 12  
weeks. Detailed information regarding the mice used 
in this study is presented in Table S1. Initially, 19 WT 
and 15 KO mice were mono-colonized with the E. coli 
NC101 strain. Only mice that survived the duration 
of the experiment (12 weeks; N = 14 WT mice and N  
= 11 KO mice) were included in the study. The study 
was performed in accordance with the approved ani
mal protocols and institutional guidelines of the Max 
Planck Institute for Evolutionary Biology, Plön. Mice 
were maintained, and experiments were performed in 
accordance with FELASA guidelines and German 
animal welfare law (Tierschutzgesetz § 11; permits 
from Veterinäramt Kreis Plön: PLÖ-0004697 and 
Ministerium für Landwirtschaft, ländliche Räume, 
Europa und Verbraucherschutz: 107-11/18).
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The strains used as inocula were diluted in sterile 
PBS, and 200 μl (equivalent to 1 × 10^8 bacteria) 
were gavaged using a sterile gavage needle 
(Reusable Feeding Needles 18 G, Fine Science 
Tools, Heidelberg, Deutschland). Fecal pellets 
were collected in a sterile manner twice a week to 
study the evolution of E. coli for a total of 24 
samples collected per mouse and once a week for 
metabolomic investigation. An overview of the 
sampling plan is presented in Figure 1a.

Histopathological evaluation

Mice were sacrificed at week 12, and colon tissue 
was collected and arranged to form a Swiss-roll.59 

Hematoxylin and eosin-stained sections of colonic 
tissue Swiss rolls were scored by two independent 
researchers in a blinded manner using the scoring 
system described by Adolph et al. (2013).60 The 
score is composed of five sub-scores: mononuclear 
cell infiltrate, crypt hyperplasia, epithelial injury or 
erosion, polymorphonuclear cell infiltrates, and 
transmural inflammation. Each of the first four 
sub scores was awarded a score from 0 to 3, 
whereas transmural inflammation was scored 
from 0 to 4, with a higher score indicating a more 
severe level of inflammatory activity. The sum of 
the sub scores was then multiplied by a factor based 
on the percentage of affected bowel length (1= < 
10%; 2 = 10–25%; 3 = 25–50%; 4 = >50%).

Feces processing

Feces weight and consistency were recorded. Feces 
were homogenized in 1.5 ml sterile PBS on 
a horizontal vortexer (Vortex Mixer Model Vortex- 
Genie® 2, Scientific Industries, Bohemia, NY, USA) 
at maximum speed for 30 min, then separated in 
three aliquots of 500 μl. Each aliquot was centri
fuged at 10,000 rpm for 5 min. The supernatants 
were transferred to a new tube and stored at −20°C 
for subsequent lipocalin-2 concentration measure
ment. One pellet aliquot was resuspended in 500 μl 
of PBS and used to prepare a 12-point 1/10 dilution 
series in a 96-well plate. Ten μl were plated onto an 
LB agar plate. Plates were incubated overnight at 
37°C and colonies were counted to estimate the 
bacterial load. The bacterial load in the fecal 

samples was calculated by normalizing CFU counts 
by wet feces weight. The second pellet aliquot was 
resuspended in 1 ml RNAlater and stored at + 4°C 
for 24 h, after which the tube was centrifuged at 
10,000 rpm for 5 min to remove the RNAlater, and 
the pellet was stored at −20°C for subsequent 
nucleic acid extraction and sequencing. The final 
pellet aliquot was resuspended in 500 μl of LB con
taining 20% glycerol and stored at −70°C for 
further phenotypic investigation.

Lipocalin-2 quantification

Lipocalin-2 concentration in the supernatants was 
measured using the commercial kit Mouse 
Lipocalin-2/NGAL DuoSet ELISA (R&D Systems, 
Minneapolis, MN, USA) for mouse Lipocalin-2 
(DY1857). Testing was performed according to 
the manufacturer’s instructions. The samples were 
diluted 1:10 and added to the plate. The optical 
density of each well was determined using a plate 
reader (SPARK, Tecan, Tecan, Männedorf, 
Switzerland) at 450 and 540 nm. Lipocalin-2 con
centrations were normalized to the weight of feces 
for each sample.

Shotgun sequencing

Total DNA and RNA were extracted using the 
ZymoBIOMICS DNA/RNA Mini Kit (Zymo 
Research, Freiburg, Germany), following the man
ufacturer’s instructions from fecal pellets collected 
at weeks 1, 4, 8, and 12, as well as from the E. coli 
NC101 cultures that served as inocula. Shotgun 
metagenomic sequencing was performed on four 
Illumina Nextseq (HighOutput 300 cycles) sequen
cing runs at the Max Planck Institute for 
Evolutionary Biology (Plön, Germany).

Raw reads were filtered and trimmed to ensure 
good quality using Cutadapt (version 3.2).61 First, 
any pair containing Ns, homopolymers (10 nucleo
tides or more), or those longer than 151 bp were 
discarded. Sequences were trimmed with a quality 
cutoff of 25 at both ends for both reads, Illumina 
adapters were removed, and sequences shorter 
than 50 bp were discarded. Good quality sequences 
were then filtered to exclude mouse sequences 
(mouse_C57BL) using KneadData.62 A final filter 
was applied to remove any adapter leftovers using 

12 R. UNNI ET AL.



Trimmomatic63 and sequences shorter than 105 bp 
were discarded. Mutations were identified using 
Breseq64 by comparing the obtained metagenomes 
with the reference genome of E. coli NC101 
(PRJNA596436) using default options (i.e. muta
tions identified by a threshold frequency > 0.05) 
and by subtracting the mutations that were 
detected in the respective inoculum. Gdtools was 
used to compare mutations in the samples.

Metatranscriptomics

Depletion of rRNA from extracted RNA was per
formed using QIAseq FastSelect−5S/16S/23S 
(Qiagen). Samples were incubated at 89°C for 8  
minutes. Libraries for metatranscriptomics were 
prepared using the Illumina TruSeq® Stranded 
mRNA Library Prep Kit (Illumina) according to 
the manufacturer’s instructions. Shotgun meta
transcriptomic sequencing of week 12 fecal samples 
was performed on an Illumina NextSeq 500/550 
using the HighOutput Kit v2.5 (75 cycles).

Quality control and trimming were performed as 
described above for shotgun sequencing. Gene 
expression in the evolved population was calculated 
in Geneious (v 2022.2.1; https://www.geneious.com) 
by mapping reads to the reference genome of E. coli 
NC101 (PRJNA596436). Differential expression was 
calculated using DeSeq265 as implemented in 
Geneious, using the parametric model and by 
assigning the conditions to “WT-” or “KO-evolved”.

Measurement of the metabolic activity of bacteria

Biolog GENIII MicroPlates (Biolog, Hayward, CA, 
USA) was used to investigate the metabolism of 
evolved populations. Evolved populations stored 
in glycerol were inoculated onto the Inoculation 
Fluid-A (IF-A) provided by the manufacturer such 
that the OD600 was between 0.02–0.05. After 
adjusting the OD600, the inoculated IF-A was sha
ken well and distributed into a Biolog GENIII 
MicroPlate (100 μl in each well). The plate was 
then covered with a sterile Breathe-Easy membrane 
(Sigma-Aldrich, St. Louis, MO) and placed in 

a plate reader (SPARK, Tecan, Männedorf, 
Switzerland) at a preset temperature of 37°C. The 
plate reader was then run with the following para
meters: temperature: 37°C, shaking: 250 rpm, 
OD590 measurement: every 15 min, total running 
time: 36 h. From the OD590 measures, area under 
the curve (AUC) was used as a proxy for metabolic 
activity. The Biolog assay was repeated for popula
tions from fecal samples collected at weeks 1 and 12 
from all 25 mice, with two replicates each.

Ex vivo assay

The cecal content was collected from each mouse 
during dissection at the end of the second experi
ment. The amount of cecal content from each 
mouse was different based on the amount in the 
cecum at the time of dissection. Sterile PBS was 
added to the cecal content, and the volume was 
adjusted based on the amount of cecal content 
collected from each mouse (20 mg/ml). The proto
col was adapted from Kitamoto et al. (2020).66 The 
PBS-cecal content mixture was centrifuged twice 
(once at 500g for 5 min and again at 10,000g for 5  
min) and then filter-sterilized through a 0.2 μm 
filter. The ex vivo medium from each mouse was 
mixed well and 100 μl was spread onto an LB agar 
plate to ensure that they were sterile. Ex vivo media 
from all healthy mice were pooled, as were the ex 
vivo media from all inflamed mice, resulting in two 
ex vivo media. Populations from fecal samples col
lected at week 12 from a subset of mice (N = 5 KO 
and N = 5 WT mice) were inoculated into the ex 
vivo media and incubated in the TECAN Spark 
plate reader at a preset temperature of 37°C. The 
plate reader was then run with the following para
meters: temperature: 37°C, shaking: 250 rpm, 
OD600 measurement: every 15 min, total running 
time: 36 h. From the OD600 measures, area under 
the curve (AUC) was used as a proxy for growth.

Metabolomic evaluation of the fecal pellets

During the second experiment, samples for meta
bolomic investigation were collected once a week 
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and snap-frozen in liquid nitrogen. Samples were 
stored at −70°C and delivered at Helmholtz Center 
Munich for metabolomic investigation. A non- 
targeted metabolomics approach of mouse fecal 
samples was undertaken using NMR spectroscopy. 
To extract the aqueous metabolites, we homoge
nized 2–3 fecal pellets in 1 ml water using ceramic 
beads (NucleoSpin, Macherey – Nagel, Dueren, 
Germany) and a TissueLyser (Qiagen, Hilden, 
Germany), mixing the sample for 3 × 30 s at 
4,500 rpm with a 10 s cooling break (<0°C). 
Subsequently, the homogenate was centrifuged 
(13,000 rpm for 10 min at 4°C), the supernatant 
evaporated using a SpeedVac, and the dried extract 
reconstituted in 200 µl NMR buffer (10% D2O, 100  
mM phosphate buffer with 0.1% trimethylsilyl- 
tetradeuteropropionic acid (TSP), pH 7.4). 
Samples were transferred to 3 mm NMR tubes, 
and immediate NMR analysis was performed in 
a randomized order with a Bruker 800 MHz spec
trometer operating at 800.35 MHz equipped with 
a Bruker SampleJet for sample cooling (283 K) and 
a QCI-cryogenic probe. A standard one- 
dimensional pulse sequence (noesygppr1d) pro
vides an overview of all molecules. The acquisition 
parameters were as follows: water suppression irra
diation during recycle delay (2 s), mixing time of 
200 ms, 90 °pulse of 12.5 µs. We collected 512 scans 
of 64 K data points with a spectral width of 12 ppm. 
The software TopSpin 3.6 (Bruker BioSpin, 
Ettlingen, Germany) was used for processing, i.e., 
Fourier transformation, manual phasing, baseline 
correction, and calibration to TSP (δ 0.00). Data 
were imported into Matlab software R2011b 
(Mathworks, Natick, MA, USA) and further pro
cessed, i.e., the water region was removed, baseline 
adjusted67 and spectra normalized.68 Relative 
quantification of metabolites was performed using 
the peak heights of selected peaks and compounds 
identified as described in our published 
workflow.69

Shortest path analysis

For the shortest path analysis, we used the meta
bolic model reconstructed using the AGORA2 
resource for the human microbiome.32 The model 
was translated into a graph with metabolites as 

nodes, and the reactions converting metabolites 
into one another as edges. The shortest path ana
lysis was performed using the Dijkstra algorithm 
implemented in the igraph package (1.3.5) of 
R (4.2.2).70,71 To avoid shortcuts through the net
work using cofactors as intermediate compounds, 
the edges were weighted by the sum of degree of the 
nodes it connected, as suggested by Faust et al.72 

For each compound from the in vitro screen, we 
calculated the set of shortest paths to all other 
metabolites in the model. Each value in the set 
was the average shortest path of the five shortest 
paths between two metabolites, which was per
formed to account for uncertainties in pathway 
calculation based only on the network properties. 
For our analysis, we only considered pathways 
between compounds from the two datasets, which 
were among the shortest 5% of pathways in 
a pathway set.

Prediction of possible conversions between 
metabolites

We wanted to understand whether the altered 
metabolic capabilities observed in the Biolog plates 
or the changed environmental conditions observed 
in the metabolomic data, together with the meta
bolism of E. coli could contribute to the observed 
changes in the metabolomic data between KO and 
WT mice. To this end, we performed flux variable 
analysis (FVA) on the metabolic model for E. coli 
NC101 (retrieved from AGORA2).32 We defined 
every significantly detected metabolite in the 
Biolog GENIII experiment or the metabolomic 
data set as a possible source metabolites, while the 
metabolites from the metabolomic data set were 
defined as target metabolites. Metabolites found 
in the metabolomics are those known to be present 
in vivo. Compounds found to be significantly dif
ferentially metabolized in the Biolog GENIII assay 
are those that we know the evolved bacteria are 
capable of metabolizing. By using the sum of 
these as the source and the detected metabolites 
as the target, we aimed to capture as many of the 
possible conversions as possible to help explain the 
composition of the in vivo environment and the 
role of bacterial metabolism in shaping it. For the 
simulation background, we employed a minimal 
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medium (Table S17), removed D-Glucose, and 
adjusted the oxygen level according to the condi
tions tested (anoxic = 0 mmol h− 1 gDW− 1, micro
aerobic = 1 mmol h− 1 gDW− 1, aerobic  
= 10 mmol h− 1 gDW− 1). For the simulation, we 
added each source metabolite individually to the 
growth medium (100 mmol h− 1 gDW− 1) and 
calculated the maximum production rates of the 
target metabolites, assuming that at least 50% of 
maximum growth rates were achieved. We consid
ered a maximum flux of > 1e− 6 as the possible 
production of the target metabolite from the source 
metabolite. FVA was performed in cobrapy73 and 
analyses were performed using the data.table and 
ggplot2 packages for R.

Statistical investigation

Statistical analyses were performed using packages 
in RStudio 2023.03.0 + 386. For PERMANOVA 
analyses, adonis was used74 on Bray-Curtis dis
tances of the data75 and mixomics was used for PLS- 
DA.76 AUCs were calculated using desctools.77
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