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Abstract 1 

The increasing prevalence of obesity-driven metabolic dysfunction-associated steatotic liver 2 

disease (MASLD) urges the development of new therapeutic strategies. Totum-448 is a unique 3 

patented combination of polyphenol-rich plant extracts designed to reduce hepatic steatosis, 4 

a risk factor for steatohepatitis and type 2 diabetes. In this study, we investigated the effects 5 

of Totum-448 on metabolic homeostasis and steatohepatitis in diet-induced MASLD mice. For 6 

this purpose, male C57Bl6/J mice were fed a high-fat diet in combination with sucrose-7 

containing drinking water for 12 weeks, followed by diet supplementation with or without 8 

Totum-448 for 4 weeks. Body weight/composition, caloric intake, plasma parameters and 9 

whole-body glucose tolerance were measured throughout the study and fecal microbiota 10 

composition was determined by 16S sequencing. Hepatic steatosis, transcriptomic/lipidomic 11 

profiles and immune cell composition were assessed by histological/biochemical assays, RNA 12 

sequencing, MS-based lipidomics, and spectral flow cytometry. We found that Totum-448 13 

significantly lowered hyperinsulinemia and systemic glucose intolerance in MASLD mice 14 

without affecting body weight, fat mass, calorie intake, feces production or fecal microbiota 15 

composition. Furthermore, a decrease in liver MASLD activity score and macrovesicular 16 

steatosis, hepatic triglycerides and cholesterol contents, and plasma alanine aminotransferase 17 

levels were observed. Totum-448 also reduced the liver inflammatory and pro-fibrotic 18 

transcriptomic signatures and decreased both MASLD-induced loss in tissue-resident Kupffer 19 

cells and recruitment of monocyte-derived pro-inflammatory macrophages. Altogether, 20 

Totum-448 reduces hepatic steatosis and inflammation in insulin-resistant, steatotic, obese 21 

mice, a dual effect that likely contributes to improved whole-body metabolic homeostasis. 22 

Supplementation with Totum-448 may therefore constitute a promising novel nutritional 23 

approach for MASLD patients.  24 
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Introduction 25 

The development of metabolic dysfunction-associated steatotic liver disease (MASLD), 26 

formerly known as non-alcoholic fatty liver disease (NAFLD)1, and its progressive more 27 

aggressive form, metabolic dysfunction-associated steatohepatitis (MASH), are closely 28 

intertwined with the current worldwide epidemic of obesity and type 2 diabetes2,3. Recent 29 

epidemiological studies have indeed highlighted the alarming rise of MASLD in both 30 

developing and developed countries, with a high prevalence rate (>50%) in overweight and 31 

obese adults that constitutes one of the health challenges of the 21st century4.  32 

MASLD has a complex pathophysiology, characterized by hepatic lipid accumulation, 33 

insulin resistance, lipotoxicity, inflammation, and progressive fibrogenesis1, with an estimated 34 

annual cost exceeding 200 billion euros in the United States and Europe alone5. The disease 35 

spectrum is broad, ranging from isolated steatosis to MASH, fibrosis, and cirrhosis, ultimately 36 

increasing the risk of hepatocellular carcinoma6-8. Effective therapeutic treatments remain 37 

scarce as only Resmetirom, a modestly effective drug for fibrotic MASH, was recently 38 

approved by the FDA9.  39 

Metaflammation, which refers to a state of chronic, low-grade inflammation arising 40 

from obesity-associated immunometabolic dysregulations in various organs, plays a pivotal 41 

role in MASLD initiation and progression10. Excessive hepatic influx of lipids and accumulation 42 

of triglycerides in form of lipid droplets in hepatocytes triggers a cascade of inflammatory 43 

responses in the liver mediated by various immune cell types, notably those from the innate 44 

myeloid compartment11,12. In this context, macrophages are believed to play a central role13-45 

16. During homeostasis, hepatic macrophages predominantly consist of self-replenishing, 46 

embryonically-derived tissue-resident Kupffer cells (resKCs)17,18. However, in response to 47 

obesity-associated lipotoxic stress and local inflammatory cues in their microenvironment, 48 
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resKCs undergo cell death, leading to an influx of circulating bone-marrow-derived monocytes 49 

for replenishing the empty niche. These cells further differentiate into monocyte-derived 50 

macrophages (moMACS) and ultimately resKCs that display almost identical features than KCs 51 

of embryonic origin19,20. Collectively, these obesogenic-driven changes in the hepatic 52 

immunological landscape contribute to the chronic inflammatory milieu, leading to liver injury, 53 

fibrosis, and ultimately, the development of MASH and its complications21-23. Moreover, 54 

metaflammation extends beyond the liver, promoting systemic metabolic dysfunction and 55 

exacerbating both central and peripheral insulin resistance, dyslipidemia, and cardiovascular 56 

risk24.  57 

The multifactorial nature of MASLD highlights the need for comprehensive strategies 58 

involving conventional lifestyle interventions and innovative preventive and/or therapeutic 59 

approaches to halt disease progression and reduce associated morbidity and mortality25. 60 

Recently, functional foods and nutraceuticals containing various bioactive compounds have 61 

received considerable attention due to their potential therapeutic benefits in the context of 62 

MASLD/MASH26,27. Indeed, their accessibility and relatively low risk of adverse effects make 63 

them attractive adjuncts to lifestyle modifications and/or pharmacological treatments. For 64 

instance, bioactive compounds such as omega-3 fatty acids, polyphenols, flavonoids, and 65 

vitamins, as well as probiotics, have been shown to mitigate lipid accumulation, inflammation, 66 

oxidative stress and insulin resistance in the liver, potentially contributing to prevent 67 

MASLD/MASH progression and/or promoting disease regression28.  68 

Totum-448 is a novel, polyphenol-rich plant-based active principle composed of a 69 

mixture of plant extracts designed to reduce obesity-induced hepatic steatosis, a risk factor 70 

for progression towards type 2 diabetes and MASH. In the present study, we aimed to 71 
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investigate the effects of Totum-448 on hepatic steatosis, liver inflammation and metabolic 72 

homeostasis in a dietary mouse model of MASLD. 73 

 74 

Materials and Methods 75 

Totum-448 76 

Totum-448 is a patented blend of 5 plant extracts and choline designed to act in combination 77 

to target the risk factors of developing MASLD. The mixture contains extracts from olive leaf 78 

(Olea europaea), bilberry (Vaccinium myrtillus), artichoke leaf (Cynara scolymus), 79 

chrysanthellum (Chrysanthellum indicum subsp. afroamericanum B.L. Turner), black pepper 80 

(Piper nigrum) and choline. Table S1 shows the chemical characterization of Totum-448. 81 

 82 

Animals and diet 83 

All experiments were performed in accordance with the Guide for the Care and Use of 84 

Laboratory Animals of the Institute for Laboratory Animal Research and were approved by the 85 

Dutch ethical committee on animal experiments (Centrale Commissie Dierproeven; 86 

AVD1060020174364). An a priori power calculation was done. Ten-week-old C57BL/6JOlaHsd 87 

male mice were purchased from Envigo (Horst, The Netherlands) and housed in a 88 

temperature-controlled room with a 12-hour light-dark cycle and ad libitum access to food 89 

and drink. Mice were fed a low-fat diet (LFD, 10% energy derived from fat, D12450H, Research 90 

Diets, New Brunswick, NJ, USA) or high fat diet (HFD, 45% energy derived from fat, D12451, 91 

Research Diets, New Brunswick, NJ, USA) supplemented with sucrose in the drinking water 92 

(10% w/v, HFD/S) for 12 weeks. The experimental groups were randomized after removal of 93 

HFD/S low responders (~5%; body weight gain <6 g), after which HFD was supplemented either 94 

with Totum-448 (Valbiotis SA, Perigny, France) or not for an additional 4 weeks. The 95 
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experimenters were not blinded to the diet supplementation on the metabolic test days, 96 

however, most of the subsequent analyses were performed in blind conditions. 97 

 98 

Body composition, energy intake and feces production 99 

Body weight was frequently measured during the 4 weeks of supplementation using a 100 

conventional weighing scale. Body composition was measured by MRI (Echo Medical Systems, 101 

Houston, TX, USA) in conscious unrestrained mice. At sacrifice, visceral white adipose tissue 102 

(epidydimal; eWAT), supraclavicular brown adipose tissue (BAT), heart and liver were weighed 103 

and collected for further processing. The intestines were collected and measured (total and 104 

colon separately) and the weight of the cecum was determined using a precision scale. Food 105 

and sucrose intake were frequently assessed throughout the study by weighing food pellets 106 

and measuring liquid volume in drinking bottle for every cage (2-3 mice per cage). At week 4, 107 

feces produced over 24h were carefully collected in cage bedding and weighed. 108 

 109 

Glucose tolerance test 110 

Whole-body intraperitoneal (i.p.) glucose tolerance (ipGTT) test was performed at week 4 of 111 

Totum-448 supplementation, as previously reported29. In short, a bolus of glucose (2g D-112 

glucose/kg body weight; Sigma-Aldrich, St. Louis, MO, USA) was administered i.p. in 6h-fasted 113 

mice and blood glucose was measured at t=0, 20, 40, 60, and 90 min post glucose injection 114 

using a Glucometer (Accu-Check; Roche Diagnostics, Basel, Switzerland).  115 

 116 

Plasma analysis 117 

Blood samples were collected from the tail vein of 4h-fasted mice using  paraoxon-coated glass 118 

capillaries. Plasma insulin was determined using a commercially available ELISA kit (Chrystal 119 
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Chem, Elk Grove Village, IL, USA) according to the manufacturer’s instructions. The 120 

homeostatic model assessment of insulin resistance (HOMA-IR) adjusted for mice30 was 121 

calculated as followed ([glucose (mg/dl)*0.055]*[insulin (ng/ml)*172.1])/3875. Plasma 122 

alanine aminotransferase (ALAT) was measured using a Reflotron® kit (Roche diagnostics, 123 

Basel, Switzerland). 124 

 125 

Fecal microbiota analyses 126 

DNA was extracted from fecal samples using the FastDNATM Spin Kit for Feces and a FastPrep-127 

24 5G (MP Biomedicals, Santa Ana, CA, USA) following the manufacturer’s instructions. 128 

Microbial 16S library preparation was performed at the PGTB (Plateforme Génome 129 

Transcriptome de Bordeaux, Bordeaux, France) by amplification and sequencing of the V3-V4 130 

region of the 16S rRNA gene on an Illumina MiSeq using the 2x250bp Illumina v2 kit (Illumina, 131 

San Diego, CA, USA). Data processing and statistical analyses are described in details in the 132 

supplementary methods section.  133 

 134 

Hepatic lipid composition 135 

Liver triglycerides (TG), total cholesterol (TC) and phospholipid (PL) contents were measured 136 

using commercial kits (Instruchemie, Delfzijl, The Netherlands) #2913, #10015 and #3009, 137 

respectively) and expressed as nmol per mg of total protein content using the Bradford protein 138 

assay kit (Sigma-Aldrich, St. Louis, MO, USA), as previously reported31,32. For lipidomics, lipids 139 

were extracted from 10 mg of liver by the methyl-tert-butylether method and analyzed using 140 

the Lipidyzer™, a direct infusion-tandem mass spectrometry-based platform (Sciex, Redwood 141 

City, CA, USA), as previously described32. Lipid concentrations were expressed as pmol/mg of 142 

liver. 143 
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 144 

Histological analysis 145 

Pieces of liver (~30 mg) were fixed in 4% formaldehyde (Sigma-Aldrich, St. Louis, MO, USA), 146 

paraffin-embedded, sectioned at 4 μm and stained with Hematoxilin and Eosin (H&E). After 147 

scanning, 5 fields at 40x or 20x magnification were used for the determination of lipid droplet 148 

(LD) size distribution and mean area, and MASLD activity score (NAS), respectively, as 149 

previously reported33.  150 

 151 

Isolation of blood and liver leukocytes for flow cytometry 152 

At sacrifice, blood was collected retro-orbitally in heparin-coated tubes for leukocyte isolation, 153 

as described previously29 and briefly described below. For liver samples, the organs were 154 

collected after a 1 min post-sacrifice transcardial perfusion with PBS and further digested for 155 

isolation of leukocytes, as previously reported34 and briefly described below.   156 

Blood  157 

Samples were diluted 1:1 in PBS (Fresenius Kabi, Bad Homburg, Germany, with calcium and 158 

magnesium) and erythrocytes were lysed for 15 min at room temperature using an 159 

erythrocyte lysis/fixation solution (BD Biosciences, Franklin Lakes, NJ, USA). Leukocytes were 160 

then centrifuged at 500 x g for 5 min at 4°C and then subsequently washed three times in PBS. 161 

After washing, cell pellets were resuspended in PBS supplemented with 1% heat inactivated 162 

fetal calf serum (hiFSC; Serana, Pessin, Germany) and 2.5 mM ethylenediaminetetraacetic acid 163 

(EDTA; Sigma-Aldrich, St. Louis, MO, USA), counted using a hemocytometer and 1*106 cells 164 

per sample were further processed for flow cytometry. 165 

Liver 166 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2025.03.24.644956doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.24.644956
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Livers were first collected in 10 mL ice-cold RPMI 1640 + Glutamax (Thermo Fisher Scientific, 167 

Waltham, MA, USA), minced and digested for 25 min at 37˚C under agitation (200 RPM) in 5 168 

mL RPMI 1640 + Glutamax supplemented with 1 mg/ml Collagenase Type IV from Clostridium 169 

histolyticum (Sigma-Aldrich, St. Louis, MO, USA, 125 CDU/ml), 1 mg/ml Dispase II (Sigma-170 

Aldrich, St. Louis, MO, USA, 1.4 U/ml), 1 mg/ml Collagenase D from C. histolyticum (Roche, 171 

Basel, Switzerland, 250 Mandl U/ml) and 2000 U/mL DNase I (Sigma-Aldrich, St. Louis, MO, 172 

USA). After digestion, samples were filtered (100 µM cell strainer; Corning, NY, USA) and 173 

pelleted at 300 x g for 10 min at 4˚C after which the pellets were washed twice with 40 mL 174 

PBS/hiFSC/EDTA. After washing, the pellets were treated with 3 mL erythrocyte lysis buffer 175 

consisting of 0.15 M NH4Cl (Merck, Rahway, NJ, USA), 1 mM KHCO3 (Merck, Rahway, NJ, USA) 176 

and 0.1 mM EDTA in ddH2O for 2 min at room temperature. Next, total leukocytes were 177 

isolated by MACS-sorting using CD45 positive selection MicroBeads and LS columns (Mitenyi 178 

Biotec, Bergisch Gladback, USA) according to the manufacturer’s instructions. Post-isolation, 179 

total leukocytes were counted using a hemacytometer and 1*106 cells per sample were 180 

further processed for flow cytometry. 181 

 182 

Flow cytometry 183 

Blood  184 

Isolated blood leukocytes were washed with PBS/hiFSC/EDTA, pelleted at 500 x g for 5 min at 185 

4°C and incubated with a cocktail of antibodies directed against CD3, CD4, CD8, CD11b, CD19, 186 

CD45, Ly6C, NK1.1 and Siglec-F (see Table S3 for details) in PBS/hiFSC/EDTA supplemented 187 

with Brilliant Stain Buffer Plus (BD Biosciences, Franklin Lakes, NJ, USA) and True Stain 188 

Monocyte Blocker (Biolegend, San Diego, CA, USA) for 30 min at room temperature. After 189 
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washing, the cells were resuspended in PBS/hiFSC/EDTA and acquired on a 3-laser Cytek 190 

Aurora (Cytek Biosciences, Fremont, CA, USA). 191 

Liver 192 

Isolated liver leukocytes were pelleted at 500 x g for 5 min at 4°C and subsequently incubated 193 

with Zombie-NIR viability dye in PBS supplemented with True Stain Monocyte Blocker for 20 194 

min at room temperature. After washing with PBS and pelleting as described above, the cells 195 

were fixed using a 2% paraformaldehyde solution (PFA; Sigma-Aldrich, St. Louis, MO, USA) in 196 

PBS for 10 min at room temperature. Post-fixation, the cells were washed with 197 

PBS/hiFSC/EDTA and incubated with a cocktail of antibodies directed against CD3, CD11b, 198 

CD11c, CD19, CD45, CD64, CD90.2, CLEC2, F4/80, Ly6C, Ly6G, NK1.1, Siglec-F, TIM4 and  199 

TREM2 (see Table S3 for details) in PBS/hiFCS/EDTA supplemented with Brilliant Stain Buffer 200 

Plus and True Stain Monocyte Blocker for 30 min at 4°C. After washing, the cells were 201 

resuspended in PBS/FSC/EDTA and acquired on a 5-laser Cytek Aurora (Cytek Biosciences, 202 

Fremont, CA, USA).  203 

SpectroFlo v3.0 (Cytek Biosciences, Fremont, CA, USA ) was used for spectral unmixing and 204 

FlowJoTM v10.8 was used to gate the flow cytometry data for all samples. Representative 205 

gating strategies used to gate the blood and liver cells can be found in Fig. S3a and Fig. S4a, 206 

respectively. 207 

 208 

RNA isolation and RNA sequencing analyses 209 

RNA was extracted from snap-frozen liver samples (~10-20 mg) using an RNA purification kit 210 

(NucleoSpin RNA Midi, Macherey-Nagel, Düren, Germany) followed by an on-filter DNAse 211 

treatment, according to the instructions provided by the manufacturer. RNA concentration 212 

and purity were measured using NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, 213 
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USA). RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 214 

2100 system (Agilent Technologies, Santa Clara, CA, USA). Further RNA sample preparation, 215 

sequencing and data pre-processing were done at Biomarker Technologies (BMK GmbH 216 

Münster, Germany), as described in the supplementary method section. 217 

 218 

RNA isolation and RT-qPCR 219 

RNA was extracted from snap-frozen liver (~10-20 mg) using TriPure RNA Isolation reagent 220 

(Roche Diagnostics, Basel, Switzerland). Total RNA (1-2 g) was reverse transcribed using the 221 

M-MLV Reverse Transcriptase kit (Thermo Fisher Scientific, Waltham, MA, USA). Real-time 222 

qPCR runs were performed on a CFX96 Real-time C1000 thermal cycler (Biorad, Hercules, CA, 223 

USA) using the GoTaq qPCR Master Mix kit (Promega, Madison, WI, USA). Gene expression 224 

was normalized using housekeeping gene RplP0 and expressed as fold change compared to 225 

LFD-fed mice. Primer sequences can be found in Table S2. 226 

 227 

Statistical analysis 228 

All data are presented as mean ± standard error of the mean (SEM). Statistical analysis was 229 

performed using GraphPad Prism 8.0 (GraphPad Software, La Jolla, CA, USA) with unpaired t-230 

test, one-way or two-way analysis of variance (ANOVA) followed by Fisher’s post-hoc test. 231 

Differences between groups were considered statistically significant at p < 0.05. Outliers were 232 

identified according to the two-standard deviation method (GraphPad Software, La Jolla, CA, 233 

USA). 234 

 235 

Results 236 
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Totum-448 improves whole-body metabolic homeostasis in MASLD mice independently of 237 

body weight changes   238 

To select the optimal Totum-448 concentration to be administered, a pilot study was 239 

performed in MASLD mice (Fig. S1). For this purpose, C57BL/6 male mice were first fed a high-240 

fat diet supplemented with sucrose in the drinking water (HFD/S) for 12 weeks, followed by 241 

HFD supplementation with or without Totum-448 at various concentrations (1.5, 2 and 2.5% 242 

w/w) for 4 additional weeks (Fig. S1a). We observed a substantial time- and dose-dependent 243 

decrease in body weight at the two highest Totum-448 concentrations (-3.8% and -9.8% at 2 244 

and 2.5% Totum-448, respectively (Fig. S1b-c)). These effects were likely due to a dose-245 

dependent decrease in food intake (Fig. S1d) even though concomitant increases in liquid 246 

energy intake were evidenced (Fig. S1e). Altogether, no significant impact on total energy 247 

intake (Fig. S1f) and feces production (Fig. S1g) were observed. To further study the effects of 248 

Totum-448 on metabolic homeostasis in insulin resistant obese MASLD mice, the 249 

concentration that did not affect body weight and food intake was selected, i.e. 1.5% w/w, 250 

and administered to HFD/S-fed mice using the same experimental settings as described above 251 

(Fig. 1a). In line with the pilot study, we did not observed any effect on body weight (Fig. 1b) 252 

and composition (Fig. 1c-d) in obese mice after a 4-week supplementation with 1.5% Totum-253 

448. As expected, HFD/S feeding increased fasting plasma glucose and insulin levels (Fig. 1e-254 

f), and HOMA-IR (Fig. 1g) when compared to low-fat diet (LFD)-fed mice. Furthermore, HFD/S 255 

impaired whole-body glucose homeostasis, as assessed by intraperitoneal glucose tolerance 256 

test (Fig. 1h). Although no effect was observed on fasting plasma glucose levels, Totum-448 257 

supplementation in HFD/S-fed mice significantly reduced insulin levels, and, consequently, the 258 

calculated HOMA-IR (Fig. 1e-g). Congruent with HOMA-IR data, Totum-448 improved whole-259 

body glucose homeostasis in obese mice (Fig. 1h), without affecting glucose-induced insulin 260 
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levels (data not shown). Of note, these weight change-independent effects of Totum-448 on 261 

insulin and HOMA-IR were already observed after 2 weeks of supplementation (Fig. S2). In 262 

addition, although the HFD/S-induced increase in total blood leukocyte counts was 263 

unchanged, the circulating levels of monocytes was significantly reduced by Totum-448, while 264 

other myeloid (neutrophils, eosinophils) and lymphoid (B, NK, CD4+ and CD8+ T) subsets were 265 

not affected (Fig. S3). 266 

 267 

Totum-448 marginally impacts fecal microbiome composition 268 

Given that obesity-induced changes in gut microbiota is associated with metabolic 269 

dysfunctions35, we next assessed the impact of Totum-448 on fecal microbiome composition 270 

by performing 16S ribosomal RNA sequencing on feces collected during the last week of the 271 

study. Importantly, Totum-448 supplementation had no effect on the length of total intestine 272 

and colon nor the weight of the cecum content at sacrifice (Fig. 2a-c). At the phylum level, the 273 

Shannon index was decreased in the HFD/S groups when compared to the LFD group, 274 

indicating a reduction in bacterial species diversity, but no significant differences were 275 

observed in response to Totum-448 supplementation (Fig. 2d). Principal component analysis 276 

(PCA) of the relative abundance of intestinal microbial communities using the Bray-Curtis 277 

dissimilarity index also confirmed that microbial composition only differed significantly 278 

between the LFD and HFD/S groups (notably Actinobacteria and Tenericutes) but not in 279 

response to Totum-448 supplementation (Fig. 2e-f, Table S4). At the genus level, the Shannon 280 

index was increased in both HFD/S and HFD/S+Totum-448 groups (Fig. 2g). The PCA analysis 281 

confirmed that the HFD/S strongly altered microbial composition when compared to LFD while 282 

Totum-448 supplementation had no significant effect (Fig. 2h). Similar PCA results were 283 

obtained using Jaccard distance (Fig. 2i), which is more sensitive to rare taxa by only taking 284 
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into account the presence or absence of a dedicated taxon, independent of its abundance. 285 

Altogether, only few bacterial taxa from the Firmicutes phylum were specifically affected by 286 

Totum-448 (Fig. 2j, Table S5), indicating a marginal impact on fecal microbiota composition.  287 

 288 

Totum-448 reduces hepatic steatosis and alters liver lipid composition  289 

Ectopic lipid accumulation, especially in the liver, triggers immunometabolic dysfunctions 290 

contributing to insulin resistance and impaired nutrient homeostasis7. Therefore, we next 291 

investigated the impact of Totum-448 supplementation on hepatic steatosis in MASLD mice. 292 

Remarkably, Totum-448 almost completely reverted HFD/S-induced hepatic steatosis in 293 

MASLD mice, as assessed by H&E staining (Fig. 3a). This effect was mostly resulting from a 294 

reduction in macrovascular steatosis (Fig. 3b-c) and associated with a significant reduction of 295 

steatosis, inflammation, hepatocellular ballooning and MASLD activity scores (Fig. 3d). These 296 

findings were further supported by a potent decrease in both liver triglycerides (TG) and total 297 

cholesterol contents (-28% and -30% respectively; p<0.05; Fig. 3e). Quantitative lipidomics 298 

further confirmed that Totum-448 significantly affected the hepatic lipid composition by 299 

reducing the liver content of a large numbers of TGs, diglycerides (DGs) and free fatty acid 300 

(FFA) species in MASLD mice (Fig. 3f-g).  301 

 302 

Totum-448 lowers inflammatory and pro-fibrotic transcriptomic signatures in the liver  303 

To gain mechanistic insights into the beneficial metabolic effects of Totum-448, bulk RNA 304 

sequencing was performed in the livers from MASLD mice. Differential gene expression 305 

analysis showed that Totum-448 induced a significant up- and downregulation of 47 and 345 306 

unique transcripts, respectively, in HFD/S-fed mice (Fig. 4a-b). Gene ontology and gene set 307 

enrichment analyses indicated an enrichment of downregulated genes involved in innate 308 
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immune response, myeloid cell and platelet activation, pro-inflammatory cytokine production 309 

and extracellular matrix organization (Fig. 4c-d). A large number of genes encoding proteins 310 

involved in liver inflammation (e.g. Lcn2) and hepatic stellate cell pro-fibrotic activation (e.g. 311 

Acta2, Timp1, Col1a1 and Mmp12) were found to be among the most significantly 312 

downregulated by Totum-448. These findings were confirmed by targeted qPCR (Fig. 4e). In 313 

line with improvements in hepatic MASLD/MASH features, a decrease in circulating alanine 314 

aminotransferase (ALT) was observed in response to Totum-448 supplementation, indicating 315 

a reduction in hepatocyte injury and liver damage (Fig. 4f). 316 

 317 

Totum-448 prevents loss of tissue-resident Kupffer cells and reduces both hepatic monocyte 318 

infiltration and accumulation of pro-inflammatory monocyte-derived macrophages  319 

To further investigate the inhibitory effect of Totum-448 on hepatic inflammation, we 320 

performed an in-depth immunophenotyping of liver leukocytes by spectral flow cytometry 321 

(see Fig. S4a for gating strategy). The total number of CD45+ hepatic leukocytes tended to be 322 

higher in HFD/S-fed mice when compared to LFD mice but was not affected by Totum-448 (Fig. 323 

5a).  Using Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) 324 

to visualize global changes in the major hepatic immune cell subsets (Fig. 5b), we observed 325 

that while Totum-448 treatment had no impact on neutrophils, NK cells, dendritic cells, and T 326 

and B cells subsets (Fig. S4b), it led to significant reduction of both eosinophil (Fig. 5c) and 327 

Ly6Chi monocytes (Fig. 5d) in the liver from MASLD mice. Remarkably, although the total 328 

macrophage abundance was not affected in any of the groups (Fig. 5e), the proportion of 329 

CD11c+ and TREM2+ expressing macrophages were increased in HFD/S-fed mice and 330 

significantly lowered by Totum-448 (Fig. 5f), indicating a reduction in pro-inflammatory and 331 

lipid-associated macrophages, respectively. The total macrophage pool was further divided 332 
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into monocyte derived CD11b+CLEC2- macrophages (moMACS) and CD11blowCLEC2+ Kupffer 333 

cells (KCs), the latter being further divided into CLEC2+TIM4- monocyte-derived Kupffer cells 334 

(moKCs) and resident CLEC2+TIM4+ Kupffer cells (resKCs) (Fig. S5a). As expected, HFD/S 335 

induced a potent loss of resKCs and a concomitant increase in moMACS in order to repopulate 336 

the KCs niche when compared to LFD-fed mice (Fig. 5g-h). Remarkably, Totum-448 337 

supplementation significantly decreased both KC loss and increased accumulation of moMACS 338 

in the livers from MASLD mice (Fig. 5g-h), strongly suggesting a reduction in HFD/S-induced 339 

KC activation and death. Of note, an immunophenotyping was also performed in eWAT from 340 

a subset of the mice (Fig. S5). Totum-448, while not significantly affecting tissue leukocyte 341 

content and relative abundances of eosinophils, monocyte and T cells (Fig. S5b-f), may also 342 

dampen tissue inflammation by reducing tissue accumulation of both total adipose tissue 343 

macrophages (ATMs), obesity-associated pro-inflammatory CD11c+ATMs (Fig. S5g-h) and 344 

neutrophils (Fig. S5i).  345 

 346 

Discussion 347 

In this study, we report and dissect the beneficial effects of Totum-448, a polyphenol-rich plant 348 

extract, on hepatic steatosis, liver inflammation and whole-body metabolic homeostasis in a 349 

dietary mouse model of MASLD.    350 

Previous studies have shown the potential of nutraceuticals in improving 351 

cardiometabolic health, particularly in the context of insulin resistance, type 2 diabetes and 352 

MASLD26-28,36. Various plant-derived bioactive compounds, such as polyphenols, flavonoids, 353 

and specific fiber blends, have been shown to improve insulin sensitivity and glucose/lipid 354 

homeostasis through mechanisms independent of weight loss, notably through modulation of 355 

gut microbiota28.  356 
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Our results indicate that Totum-448 has a limited impact on microbiota composition in 357 

MASLD mice. While HFD/S feeding significantly altered fecal microbial diversity and 358 

composition, the marginal differences only observed in some Firmicutes taxa in response to 359 

Totum-448 supplementation suggest a negligible impact rather than a broad restructuring of 360 

the gut microbiome. While numerous animal studies have reported major effect of 361 

polyphenols on microbiota in a context of MASLD37, the relatively marginal impact of Totum-362 

448 on microbiome composition observed in this work may be partly related to the study 363 

design. Indeed, the majority of the preclinical studies were actually carried out with the 364 

administration of polyphenols starting simultaneously with the initiation of the dietary 365 

regimen, i.e. assessing the impact on disease progression rather than on its regression38. A few 366 

studies did report significant changes in microbiota in a context of pre-established dysbiosis, 367 

but the duration of supplementation was significantly longer compared to this study39,40, 368 

suggesting that 4-week supplementation with Totum-448 might have been insufficient to 369 

counteract the deep-seated microbial changes induced by HFD/S.  370 

Despite this, significant effects on hepatic steatosis were observed in Totum-448-371 

supplemented mice. While this study was not designed to determine which specific compound 372 

was responsible for these benefits, previous research has demonstrated direct actions of 373 

certain isolated polyphenols found in Totum-448 on the liver, leading to reduced lipid 374 

accumulation. Among the most extensively studied polyphenols in HFD-fed mice, oleuropein 375 

has been shown to inhibit Wnt10b- and FGFR1-mediated signaling pathways involved in 376 

hepatic lipogenesis, while also suppressing TLR2- and TLR4-mediated pro-inflammatory 377 

signaling implicated in hepatic steatosis41. Additionally, it was shown to regulate lipid 378 

oxidation, lipogenesis, and inflammation via PPAR-α42 and activates autophagy pathways 379 

through AMPK43. Moreover, chlorogenic acid alleviated steatosis by inhibiting ALKBH5 activity, 380 
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which in turn suppressed the ERK signaling pathway and regulated autophagy44. Similarly, 381 

luteolin has been reported to enhance mitochondrial biogenesis via the AMPK/PGC1α 382 

pathway, promoting fatty acid oxidation45. It also inhibits IL-1 and IL-18 pro-inflammatory 383 

pathways46 and reduces lipid accumulation by preventing LXR-mediated sterol regulatory 384 

element-binding protein-1 (SREBP-1c) activation47. Finally, caffeic acid has demonstrated 385 

promising hepatoprotective effects both in vivo and in vitro, reducing hepatocyte lipid 386 

accumulation and increasing autophagy, possibly through modulation of either fibroblast 387 

growth factor 21 (FGF21), FGF receptor 1 (FGFR1), β-Klotho (KLB), and/or the AMPK-SREBP-1c 388 

axis48-50. In addition to polyphenols, choline, another component of Totum-448, has been 389 

shown to reduce hepatic steatosis by enhancing mitochondrial function and β-oxidation while 390 

decreasing lipid accumulation51-54. Overall, polyphenols and choline are believed to exert anti-391 

steatotic effects in the liver through a combination of anti-inflammatory and antioxidant 392 

mechanisms, which collectively could help alleviating insulin resistance, along with the 393 

activation of PPAR-α-mediated fatty acid oxidation and the inhibition of lipogenesis via the 394 

AMPK/SREBP-1c pathway55,56. In the present work, however, our liver transcriptomic analysis 395 

did not fully reflect all these pathways in the metabolic signature. Instead, the most 396 

pronounced effects were related to anti-inflammatory and anti-fibrotic responses, suggesting 397 

the participation of extrahepatic mechanisms. For instance, increased adipose tissue lipolysis 398 

due to insulin resistance is a well-recognized contributor to excessive free fatty acid delivery 399 

to the liver, resulting in steatosis. Although we did not specifically assess insulin resistance or 400 

inflammation in adipose tissue, the fact that WAT weight tended to be higher in Totum-448-401 

supplemented mice raises intriguing possibilities for future investigations into its role in the 402 

observed metabolic effects. 403 
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 In addition to its impact on metabolic homeostasis, this study provides an 404 

overview of the effects of Totum-448 on hepatic immune cell composition in HFD/S-fed mice, 405 

supporting the growing evidence that nutraceuticals, especially those of polyphenol-rich 406 

nature, can exert immunomodulatory effects which may contribute to improved metabolic 407 

outcomes57. In the liver, couple of key features were also associated with Totum-448 408 

supplementation, namely reductions in HFD/S-induced eosinophilia, KC loss and moMACS 409 

accumulation. Eosinophilic inflammation has been linked to progressive MASLD and suggested 410 

to be a potential contributor to fibrotic remodeling observed in later-stage MASH58,59. 411 

Interestingly, we found that Totum-448 supplementation almost completely reversed HFD/S 412 

induced eosinophil accumulation indicating a potential protective effect against progressive 413 

MASH. Remarkably, Totum-448 supplementation also decreased the loss of embryonically-414 

derived resKCs and reduced the recruitment and/or differentiation of moMACS, highlighting 415 

a beneficial remodeling of the hepatic macrophage compartment associated with reduced 416 

inflammation and MASLD progression. In addition to changes in hepatic macrophage 417 

ontogeny, modulation of their activation states have also been linked to MASLD/MASH 418 

progression, with CD11c expression being a hallmark of pro-inflammatory macrophage 419 

activation60,61. In our study the expression of CD11c among the total macrophage pool was 420 

significantly reduced in response to Totum-448 supplementation, indicating an overall 421 

decrease in the inflammatory activation of the hepatic macrophage compartment. 422 

Furthermore, one of the key macrophage subsets recently identified during MASLD 423 

development, called lipid-associated macrophages (LAM), were shown to arise in both WAT 424 

and the liver during obesity and to display a unique ability to store and oxidize lipids when 425 

compared to resKCs62. LAMs are intimately linked with fibrotic areas in the liver during MASH 426 

development and have been shown to play an essential role in regression of fibrosis12,63. One 427 
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of the key defining markers of LAMs is the expression of Triggering receptor expressed on 428 

myeloid cells-2 (TREM2) which is strongly associated with steatohepatitis in different diet-429 

induced murine models of MASH59,60. Although the exact role of TREM2+ macrophages in the 430 

MASLD/MASH pathophysiology still remains to be clarified, they are intimately linked with 431 

disease progression of MASLD to MASH and the rise of fibrosis and serve as an indicator of 432 

disease severity. It is however tempting to speculate that the observed decrease in TREM2+ 433 

macrophages induced by Totum-488 supplementation may result from a reduction in their 434 

hepatic recruitment secondary to dampening of pro-inflammatory and pro-fibrotic signaling.    435 

 In addition to the potential anti-fibrotic and immunomodulatory effects of Totum-448, 436 

the RNA sequencing data highlighted a potential lowering of platelet activation in response to 437 

Totum-448 supplementation. MASLD/MASH have been associated with a pro-thrombotic 438 

state and increased intrahepatic platelet accumulation and activation has previously been 439 

associated with various stages in MASLD and MASH pathophysiology64-66.  For example, one 440 

study reported that platelet-derived growth factor B (PDGF-B) could activate hepatic stellate 441 

cells (HSCs) and promote liver fibrosis64, whilst other studies demonstrated the anti-442 

steatotic/fibrotic effects of aspirin use65 and various anti-platelet drugs67. Platelets also 443 

directly interact with KCs , a feature that has been demonstrated in early steatosis and shown 444 

to contributes to MASH development through increased immune cell recruitment68. One may 445 

therefore speculate that part of the beneficial effects of Totum-448 could be related to a direct 446 

effect on intrahepatic platelet dynamics and activation, an interesting aspect to investigate 447 

that would require further studies. 448 

Several limitations of this study ought to be acknowledged, one of them being the lack 449 

of a clear underlying mechanism explaining the observed immunometabolic effects of Totum-450 

448. Given its polyphenol-rich composition, its benefits are likely mediated through the 451 
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pleiotropic action of various bioactive molecules, influencing multiple cell types and organs 452 

both directly and indirectly. However, tissue-specific changes in insulin sensitivity were not 453 

assessed in our study, which limits our understanding of whether peripheral organs, such as 454 

the liver, adipose tissue or skeletal muscle, were specifically affected by Totum-448 455 

supplementation. Furthermore, it is worth mentioning that the dietary model used in the 456 

current study induces a rather mild form of MASLD/MASH, with hepatic steatosis and some 457 

degree of inflammation, but without detectable fibrosis as assessed by collagen accumulation 458 

using Sirius red staining or hydroxyproline assay (data not shown). Similarly, the majority of 459 

studies describing immunological changes in the liver during MASH also rely on the use of 460 

more advanced models of MASH. One might therefore speculate that Totum-448 may 461 

eventually exert even more beneficial effects in advanced MASH stages, or could reveal 462 

stronger immunomodulatory and anti-fibrotic properties than the ones observed with the 463 

current experimental settings. Another limitation is that the study was conducted exclusively 464 

in male mice. It is well established that metabolic responses to dietary interventions, including 465 

to HFD exposure69 or polyphenol supplementation70, are exhibiting sexual dimorphism, with 466 

female mice displaying different adaptations due to hormonal variations, gut microbiota 467 

composition, immune cell profiles and intrinsic metabolic flexibility. Hence, the absence of 468 

female subjects prevents a comprehensive evaluation of whether the observed effects would 469 

be similar in both sexes. Finally, while rodent models provide valuable insights into metabolic 470 

disorders such as MASLD, their relevance to human physiology remains a key consideration. 471 

Therefore, further clinical trials are necessary to determine whether these findings translate 472 

to human populations. 473 

In summary, we show that Totum-448 supplementation reduces both hepatic steatosis 474 

and liver inflammation, and improves whole-body metabolic homeostasis in a diet-induced 475 
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MASLD mouse model. Although the underlying mechanism(s) of Totum-448 remain to be 476 

elucidated, its beneficial immunometabolic properties likely result from pleiotropic actions on 477 

various cell types and/or organs driven by a variety of plant-derived polyphenolic molecules. 478 

Altogether, supplementation with Totum-448 may constitute a promising novel nutritional 479 

approach for MASLD patients. 480 
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Figure legends 720 

 721 

Figure 1. T448 improves HFD-induced insulin resistance without affecting body weight and  722 

body composition. 10 week-old C57BL/6JOlaHsd male mice were fed either a low-fat diet 723 

(LFD, open squares/bars) or high-fat diet (HFD) supplemented with sucrose in the drinking 724 

water (10% w/v, HFD/S) for a period of 12 weeks after which the HFD was either supplemented 725 

with Totum-448 (T448, 1.5% g/g; purple squares/bars) or left without supplementation 726 

(control; black squares/bars) for 4 additional weeks (a). At week 4 of treatment, body weight 727 

(b) and body composition (c) were determined. Post-sacrifice, the weight of the liver, WAT, 728 

BAT and heart were determined (d). The fasting glucose and insulin levels (e-f) were 729 

determined at week 4 and used to calculate HOMA-IR (g). An intraperitoneal (i.p.) glucose 730 

tolerance test (GTT) was performed at week 4 in 6-hour fasted mice. Blood glucose levels were 731 

measured at baseline and 20, 40, 60 and 90 min post-injection, and the AUC was calculated 732 

(h). Results are expressed as mean ± SEM. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. n=10-12 mice 733 

per group from 2 independent experiments. 734 

 735 

Figure 2. Totum-448 does not have significant impact on intestine length and fecal 736 

microbiome composition. LFD- and HFD/S-fed mice were treated as described in Fig. 1. The 737 

intestine and colon lengths and the cecum weight were measured post-sacrifice (a-c). Fecal 738 

microbiome alpha and beta diversity: species richness and evenness were assessed at phylum 739 

(d) and genus (g) level by Shannon index. Principal coordinate analysis of microbial 740 

composition using Bray-Curtis (e,h) and Jaccard (i) distances at phylum (e) and genus (h,i) 741 

levels. Average relative microbiome composition of fecal samples at phylum (f) and genus (j) 742 

levels. For visual clarity, only the most abundant 5 phyla and 20 genera are presented 743 
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individually, the rest being summed up into “Others”. Results are expressed as mean ± SEM. 744 

n=10-12 mice per group from 2 independent experiments. 745 

 746 

Figure 3. Totum-448 reduces hepatic steatosis. LFD- and HFD/S-fed mice were treated as 747 

described in Fig.1. PFA-fixed, paraffin-embedded liver section were stained with Hematoxilin 748 

and Eosin (H&E, a) followed by computer-assisted determination of hepatic lipid droplet (LD) 749 

size distribution (b) and mean LD area (c). H&E-stained slides were also used to assess the 750 

hepatic steatosis, lobular inflammation, hepatocellular ballooning scores and overall MAFLD 751 

activity score (NAS) (d). Hepatic triglyceride (TG), total cholesterol (TC) and phospholipid (PL) 752 

contents (e) were determined post-sacrifice. The hepatic lipid composition was determined by 753 

targeted lipidomics using the Lipidyzer platform. The heatmap shows the relative abundance 754 

of the individual lipid species per class in each group (f). The relative increase and decrease of 755 

various lipid species per class in livers from HFD/S+T448 compared to HFD/S-fed mice are 756 

displayed on the volcano plot (g). CE, Cholesterylester; CER, ceramides; DG, Diglycerides; FFA, 757 

Free-fatty acids; LP, Lipoprotein; PL, Phospholipids; SM, Sphingomyelin; TG, Triglycerides. 758 

Results are expressed as mean ± SEM. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. n=10-12 mice per 759 

group from 2 independent experiments for a-e and n=3-4 mice per group for lipidomics.   760 

 761 

Figure 4. Totum-448 reduces the hepatic expression of inflammatory and fibrotic genes. LFD- 762 

and HFD/S-fed mice were treated as described in Fig. 1. Bulk RNA sequencing was performed 763 

in liver samples to assess hepatic transcriptional changes in response to T448 764 

supplementation. Hierarchically clustered heatmap displays differentially-expressed genes 765 

(DEGs) in each group (a). The volcano plot depicts significantly up- and down-regulated genes 766 

in livers from HFD/S+T448- compared to HFD/S-fed mice (b). A GO-term analysis on DEGs (c) 767 
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and a gene set enrichment analysis (GSEA, d) were performed on the whole transcriptome. 768 

Targeted qPCR was performed to assess the expression of pan-inflammatory gene Lcn2 and 769 

fibrosis-related genes (e). Plasma alanine transaminase (ALT) levels were determined at week 770 

4 in 6-hour fasted mice (f). Results are expressed as mean ± SEM. * p ≤ 0.05, ** p ≤ 0.01. n=3 771 

mice per group for bulk RNA-seq (a-d) and n=10-12 mice per group from 2 independent 772 

experiments for targeted qPCR (e-g). 773 

 774 

Figure 5. Totum-448 prevents resident Kupffer cell loss and reduces both monocyte 775 

infiltration and accumulation of pro-inflammatory monocyte-derived macrophages. LFD- 776 

and HFD/S-fed mice were treated as described in the legends of Fig. 1. The total number of 777 

CD45+ hepatic leukocytes was determined after isolation (a). Uniform Manifold Approximation 778 

and Projection for Dimension Reduction (UMAP) was used to assess global changes in the 779 

major hepatic immune cell subsets (b). The proportion of eosinophils (c) monocytes (d) and 780 

total hepatic macrophages (e) expressed as frequency of total CD45+ leukocytes and the 781 

proportion of CD11c+ and TREM2+ expressing macrophages were determined (f). The 782 

abundance of resident Kupffer cells (g) and monocyte-derived macrophages (moMACS, h) 783 

expressed as frequency of the total hepatic macrophage pool was determined. Results are 784 

expressed as mean ± SEM. * p ≤ 0.05, ** p ≤ 0.01. n=10-12 mice per group from 2 independent 785 

experiments. 786 
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Figure 1 789 
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Figure 2 792 
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Figure 3 795 
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Figure 4 797 

 798 

LFD HFD/S +T448

c

DOWN UP

Genes

P-adj

>50

<10
10-25

25-50

<5.10-2

<10-3

<10-5

Positive Regulation Of Interleukin-1 Production   (GO:0032732)
Extracellular Matrix Organization   (GO:0030198)

Positive Regulation Of Cytokine Production   (GO:0001819)
Regulation Of Phagocytosis   (GO:0050764)

Positive Regulation Of Tumor Necrosis Factor Production   (GO:0032760)
Regulation Of Mononuclear Cell Migration   (GO:0071675)

Collagen-Containing Extracellular Matrix   (GO:0062023)
Specific Granule   (GO:0042581)
Tertiary Granule   (GO:0070820)

Secretory Granule Lumen   (GO:0034774)
Lytic Vacuole   (GO:0000323)

Actin Cytoskeleton   (GO:0015629)

Actin Binding   (GO:0003779)
Glutathione Transferase Activity   (GO:0004364)

Immune System   (R-HSA-168256)
Neutrophil Degranulation (R-HSA-6798695)

Cytokine Signaling In Immune System (R-HSA-1280215)
Innate Immune System   (R-HSA-168249)

Extracellular Matrix Organization (R-HSA-1474244)
Assembly Of Collagen Fibrils And Other Multimeric Structures (R-HSA-2022090)

Biological Process

Cellular Component

Molecular Function

Reactome

b

-6 -4 -2 0 2 4 6

0

2

4

6

Log2FC
(HFD/S vs HFD/S+T448)

-L
o

g
1

0
p

v
a

lu
e

DOWN: 345 UP: 47

Hhip

Saa2

Mmp12

Col3a1

Tgfb1

Lox

Col1a1

a

Inflammatory response

NES: -1,52
FDR q-value: 0.07

NES: -1.52
FDR q-value: 0.07

d
Extracellular matrix organization Platelet activation

NES: -1,31
FDR q-value: 0.10

NES: -1.43
FDR q-value: 0.10

0

5

10

15

20

L
c

n
2

e
x

p
re

s
s

io
n

(F
C

v
s

L
F

D
)

✱✱

e

0

1

2

3

4

5

A
c

ta
2

e
x

p
re

s
s

io
n

(F
C

v
s

L
F

D
) ✱

0

5

10

15

T
im

p
1

e
x

p
re

s
s

io
n

(F
C

v
s

L
F

D
)

✱

0

2

4

6

8

C
o

l1
a

1
e

x
p

re
s

s
io

n

(F
C

v
s

L
F

D
) ✱

Myeloid cell activation

<10-10

0

2

4

6

L
o

x
e

x
p

re
s
s
io

n
(F

C
v
s

L
F

D
)

✱✱

0

1

2

3

C
o

l3
a
1

e
x
p

re
s
s
io

n
(F

C
v
s

L
F

D
)

✱✱

0

5

10

15

20

M
m

p
1
2

e
x
p

re
s
s
io

n
(F

C
v
s

L
F

D
) ✱

HFD/S (negatively correlated)

HFD/S+T448 (positively correlated)

HFD/S (negatively correlated) HFD/S (negatively correlated) HFD/S (negatively correlated)

HFD/S+T448 (positively correlated) HFD/S+T448 (positively correlated) HFD/S+T448 (positively correlated)

LFD HFD/S HFD/S+T448

0

25

50

75

100

125

A
L

T
 (

U
/L

)

0.0710
f

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2025.03.24.644956doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.24.644956
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

Figure 5 799 
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